Metal sulphide-tetraphosphorusdekasulphide phase diagrams

Heike Andrae and Roger Blachnik

Anorganische Chemie, Universität Osnabrück, Barbarastraße 7, W-4500 Osnabrück (Germany)

(Received May 25, 1992)

Abstract

The phase diagrams of the quasibinary systems $Ag_2S-P_4S_{10}$, $Cu_2S-P_4S_{10}$, $Tl_2S-P_4S_{10}$ and $Sb_2S_3-P_4S_{10}$ were determined by means of difference thermal and X-ray analyses. $Ag_2S-P_4S_{10}$ contains the congruently melting compound Ag_7P_{56} , the peritectic compounds Ag_3PS_4 , $Ag_4P_2S_7$ and $Ag_2P_2S_6$ and the peritectoid high temperature compound $Ag_7P_3S_{11}$. The lattice parameters of Ag_3PS_4 and of a new high temperature modification of $Ag_4P_2S_7$ were determined: Ag_3PS_4 , space group $Pmn2_1$, a = 765.0(1), b = 686.8(1), c = 650.9(1) pm; HT- $Ag_4P_2S_7$, a = 807.3(2), b = 1102.2(3), c = 636.8(2) pm, $\beta = 105.22(3)^\circ$. In the system $Cu_2S-P_4S_{10}$ the congruently melting compound Cu_7PS_6 , the peritectic compound Cu_3PS_4 and the new metathiophosphate (CuPS₃)_n were observed. The IR and Raman spectra of the compounds are given. The systems $Tl_2S-P_4S_{10}$ and $Sb_2S_3-P_4S_{10}$ are simple. Similar to the system $Ag_2S-P_4S_{10}$, miscibility gaps were found on the P_4S_{10} -rich side of these systems. The compounds Tl_3PS_4 , $Tl_2P_2S_6$ and SbPS₄ (lattice parameters a = 1306.03(5), c = 627.9(5) pm) melt congruently.

1. Introduction

Materials with non-linear optical properties have found growing interest in materials science research groups. Until now, the investigations have mainly dealt with oxide-based systems. One condition for non-linear optical effects is the absence of a centre of inversion, *i.e.* that the compound crystallizes in an acentric space group. The average percentage of such compounds in inorganic compounds is 15%. This probability becomes larger in materials such as sulphides and oxocompounds of phosphorus [1]. The increased occurrence of acentric structures in these systems is possibly related to the polarizability of the S^{2-} and PS_4^{3-} building units. The latter groups can be linked to various structural motifs which give rise to numerous compounds. Some of these must crystallize in acentric space groups. For this reason we are investigating the phase relations in ternary metal-phosphorus-sulphur systems. In this paper we report the quasibinary cross-sections $Cu_2S-P_4S_{10}$, $Ag_2S-P_4S_{10}$, $Tl_2S-P_4S_{10}$ and $Sb_2S_3-P_4S_{10}$.

2. Experimental details

High purity elements (copper 99.999%, silver 99.999%, Degussa; thallium 99.999%, Ventron; antimony 99.999%, Preussag; phosphorus, ultrapure, electronic grade, Hoechst AG, Werk Knapsack; sulphur, chem. pure, cryst., Riedel de Haen AG) were mixed in stoichiometric amounts for preparation of the binary compounds which form the systems. The preparation was carried out in evacuated quartz ampoules which were first heated above the melting points of the elements and then annealed slightly below the melting point of the compounds. The purity of the products was confirmed by X-ray analysis. For investigation of the systems, mixtures were made in steps of 5 mol% from these compounds and transferred into quartz ampoules. These were evacuated and sealed. The reactants were first melted in a flame and shaken vigorously to homogenize the melt. The samples were then annealed in the solid state for periods between two weeks and two months and afterwards quenched to ambient temperature. Samples of each product were ground to a powder and transferred into thin-walled tubes of 2-3 mm outer diameter, which were then evacuated and sealed. A previously described apparatus [2] was used for the differential thermal analysis (DTA) measurements of these samples. The thermograms were recorded with silicon as reference material. The heating and cooling rates were 10 K min⁻¹. Other samples were investigated by X-ray methods (Guinier-4 (Huber), automated diffractometer system (Stoe), Guinier-Simon FR 533 (Enraf Nonius), all with Cu K α radiation). Xray data were evaluated by the program LSUCR [3]. These DTA- and X-ray data were used to construct the phase diagrams of the systems.

IR and Fourier IR spectra ($650-35 \text{ cm}^{-1}$) were obtained at 300 K with a spectrometer IFS-114 (Bruker),

the powdered samples being dispersed in Nujol or CsI. The Raman spectra were recorded using an Omar-89 (Dilor), fitted with a krypton laser.

3. Results

Although the systems $Cu_2S-P_4S_{10}$ and $Ag_2S-P_4S_{10}$ reveal some differences, both show essentially similar features because the metal ions in these systems, Figs. 1 and 2, have the d¹⁰ configuration. The liquidi of both are determined by the high-melting $Cu(Ag)_7PS_6$ compound. From the melting points of these mainly metallic sulphides the liquidi descend steeply to degenerated eutectica with eutectic temperatures, which are close to the melting point of molecular P_4S_{10} . Both systems contain a number of compounds which are listed in Table 1. One important difference between these systems is a miscibility gap in the liquid state which was only observed in the $Ag_2S-P_4S_{10}$ system. A second variation is disclosed in the concentration region between the compounds M_3PS_4 and MPS₃. In this part

Fig. 2. The system $Cu_2S-P_4S_{10}$.

two additional compounds are found in the silver sulphide system.

The structure of P_4S_{10} is based on a tetrahedral arrangement of atoms, in which the phosphorus atoms are surrounded by four sulphur atoms. The decasulphide can undergo nucleophilic attack, which can lead to compounds with discrete tetrahedral PS_4^{3-} anions or to dimers, in which these tetrahedra are linked together by sharing one or two sulphur atoms. By the addition of M_2S the molecule P_4S_{10} will disintegrate similarly by rupture of P–S–P bridges by the attack of excess sulphur ions.

The PS_4^{3-} tetrahedra will occur isolated or connected to oligomers via common corners or edges in the structures of the compounds depending on the S^{2-} ion concentration. Cu_7PS_6 [4] and Ag_7PS_6 [7] formed with the highest excess of S^{2-} , are both members of the argyrodite family. In a simplified description one may consider the structure as an Ag_2S matrix containing isolated PS_4^{3-} ions. In their high-temperature modifications a disordered metal(I) ion substructure is found. It shows good ionic conductivity owing to the high mobility of the monovalent cations. On cooling an ordered phase is formed. Tetrahedra are also found in Cu_3PS_4 and Ag_3PS_4 by spectroscopic measurements. The structure of Ag_3PS_4 has not yet been determined.

TABLE 1. Compounds of the systems $\text{Cu}_2\text{S}\text{-}\text{P}_4\text{S}_{10}$ and $\text{Ag}_2\text{S}\text{-}\text{P}_4\text{S}_{10}$

Compound	Туре	T _u	T _{per} ^a (K)	T _m (K)	Space group	Lattice parameters (pm)	Reference
Cu ₇ PS ₆ (LT)		515 508			P2 ₁ 3	a = 967.09(6) a = 967.3(1)	4
Cu ₇ PS ₆ (HT)	Congruent			1327 1318	F43m	a = 971.3(2), T = 587 K a = 971(2), T = 508 K	4
Cu ₃ PS ₄	Peritectic		1237		Pmn2 ₁	$a = 729.67(6), b = 632.65(4), c = 607.22(8)^{b}$ $a = 729.6(2), b = 631.9(2), c = 607.2(2)^{b}$ a = 643, b = 755, c = 612	5 6
(CuPS ₃) _n	Peritectic		707		?		
Ag ₇ PS ₆ (LT)		539 495			<i>P</i> 2 ₁ 3	a = 1039.44(9) a = 1040.2(2)	7
Ag ₇ PS ₆ (HT)	Congruent			1092 1065	F43m	a = 1050.2(2), T = 560 K a = 1048.6(5), T = 573 K	8
Ag ₃ PS ₄	Peritectoid		803		$Pmn2_1$	a = 765.0(1), b = 686.8(1), c = 650.9(1)	
$Ag_7P_3S_{11}$	Peritectic		857		B2/b	$a = 2397.1(5), b = 2489.9(6), c = 635.4(2), \gamma = 110.96(2)^{\circ}$ $a = 2397(1), b = 2488(1), c = 636.1(4), \gamma = 110.85(5)^{\circ b}$	9
$Ag_4P_2S_7$ (LT)		700			B2/b	$a = 1078.8(2), b = 1621.1(4), c = 653.8(1), \gamma = 106.8(2)^{\circ}$ $a = 1077.8(5), b = 1621.1(8), c = 653.4(3), \gamma = 106.8(1)^{\circ b}$	10
$Ag_4P_2S_7$ (HT)	Peritectic		740		Monoclinic (A-centred)	$a = 807.3(2), b = 1102.2(3), c = 636.8(2), \beta = 105.22(3)^{\circ}$	
$Ag_2P_2S_6$	Peritectic		719		B2/m	$a = 1123.8(1), b = 674.2(2), c = 701.8(2), \gamma = 126.96(2)$ $a = 1121.0(3), b = 673.1(2), c = 699.8(2), \gamma = 126.84(2)^{b}$	11

"No literature data are given for this temperature, because the peritectic character of these compounds was not recognized in former works.

^bSingle-crystal data; LT low temperature modification, HT high temperature modification.

nnealing temperatures $\triangle 403$ K, Fig. 4. The

From the similarity of the vibration spectra Pätzmann and Brockner [12] concluded that Ag_3PS_4 should crystallize in the enargite structure [13]. We simulated the

○ 513 K).

Fig. 4. The system $Sb_2S_3-P_4S_{10}$.

X-ray pattern of Ag_3PS_4 (Table 2) with the aid of the program Lazy Pulverix [14] and the atomic positions of Cu_3PS_4 [5]. A good agreement between simulated

a Ag₇PS₆ b Ag₃PS₆ c Ag₆P₂S₇

Fig. 5. Fourier IR spectra of Ag₇PS₆, Ag₃PS₄ and Ag₄P₂S₇.

Fig. 6. Raman spectrum of Ag₃PS₄.

and experimental X-ray reflections was obtained, indicating that Ag_3PS_4 crystallizes in the enargite structure. In the $P_2S_7^{4-}$ unit which was observed in $Ag_4P_2S_7$ [10], and together with isolated PS_4^{3-} groups in $Ag_7P_3S_{11}$ [9], two tetrahedra share a corner. $Ag_4P_2S_7$ exists in two modifications, of which the structure of the low temperature form was reported by Toffoli *et al.* [10]. This phase transforms at 700 K into a high temperature form with monoclinic symmetry (Table 3). Surprisingly, $Cu_4P_2S_7$, (cubic, a = 1034(4)) pm, could not be prepared in annealing experiments at temperatures between 600 and 1000 K, though it had been reported in the literature [15]. In the metathiophosphate $Ag_2P_2S_6$ [11] two PS_4^{3-} tetrahedra are connected by a common edge. We

Fig. 7. Raman spectrum of $Ag_4P_2S_7$: (a) 600-425 cm⁻¹ relative intensity 300, (b) 400-100 cm⁻¹ relative intensity 900.

also observed a metathiophosphate in the copper system, but were not able to prepare single crystals of $(CuPS_3)_n$, therefore no structural information can be given. However, the compound should contain edge-sharing tetrahedra. Its X-ray data are given in Table 4.

Additionally, two phase diagrams $Tl_2S-P_4S_{10}$ and $Sb_2S_3-P_4S_{10}$ were investigated, in which the metal ions have an s²-electron configuration. Samples of the system $Tl_2S-P_4S_{10}$ were annealed at 403 and 513 K. The phase diagram is given in Fig. 3. The system has a eutectic at 699 K and approximately 4 mol% P₄S₁₀. The compound Tl₃PS₄ [16] melts congruently at 812 K. A second eutectic equilibrium is found between Tl₃PS₄ and $Tl_2P_2S_6$. The eutectic composition and temperature are approximately 20 mol% P_4S_{10} and 674 K respectively. $Tl_2P_2S_6$ [17] melts congruently at 842 K. The region between 33 mol% P_4S_{10} and P_4S_{10} is determined by a third eutectic and a monotectic equilibrium with temperatures of 753 and 553 K. No solid solubility in either of the constituent components was observed. A recent investigation of Tl_3PS_4 shows a width of the homogeneity region of 3.2 mol% P_4S_{10} at 298 K [18]. As expected, the structure of Tl_3PS_4 contains isolated PS_4^{3-} tetrahedra and that of Tl₂P₂S₆ contains corner-sharing tetrahedra [16, 17]. The section Tl_2S -"P₄S₆" is not quasibinary. In samples annealed at 513 K we observed $Tl_2S + Tl_3PS_4$ between 0 and 20 mol%, the compounds Tl₃PS₄ and H. Andrae, R. Blachnik / Metal sulphide- P_4S_{10} phase diagrams

Fig. 8. Fourier IR spectra of Cu₇PS₆ and Cu₃PS₄.

TlPS₂ in the small concentration range between 20 and 25 mol%, only TlPS₂ between 25 and 36 mol%, and TlPS₂ and Tl₂P₂S₆ between 36 and 50 mol% "P₄S₆".

TABLE 2. X-ray-powder data of Ag₃PS₄

The system $Sb_2S_3 - P_4S_{10}$ (Fig. 4) was constructed on the basis of data obtained from samples annealed at 600 and 500 K respectively and contains two eutectic and one monotectic equilibria and the congruently melting compound $SbPS_4$. The eutectic equilibria were observed at 719 K, 12.8 mol% P₄S₁₀ and 540 K, 95.5 mol% P₄S₁₀. A miscibility gap appears between approximately 55 and 65 mol% P_4S_{10} , which has a monotectic temperature of 805 K. The homogeneity range of SbPS₄ extends at 540 K from the stoichiometric composition to 50 mol% P_4S_{10} . The recently reported wide solid solution region based on Sb₂S₃ with a limiting $Sb_2S_3-P_2S_5$ ratio of 6:1 and the compound SbP_3S_9 [19] were not found in our experiments. The relevant data of the compounds are presented in Table 5. The habit of the SbPS₄ crystal (yellow hair-like crystals) allows the conclusion that in this compound PS_4^{3-} tetrahedra are linked in chains. A preliminary investigation of SnS-P₄S₁₀ revealed the non-quasibinary character of the system.

The IR and Raman spectra of Ag_3PS_4 [12], $Ag_4P_2S_7$ [20], $Ag_2P_2S_6$ [20] and Cu_3PS_4 [12, 21, 22] have been reported. In order to characterize the thiophosphates completely, we give the spectra of those compounds, for which literature data are not available or contain spectral lines due to impurities. The Fourier IR and Raman spectra of Ag_7PS_6 , Ag_3PS_4 and low temperature $Ag_4P_2S_7$ are given in Figs. 5–7. The Fourier IR spectra of Cu_7PS_6 and Cu_3PS_4 are depicted in Fig. 8.

The orthothiophosphates and the argyrodites in the investigated systems crystallize in acentric space groups. Determinations of their electro-optical properties are in progress.

$2\theta_{exp}^{a}$ (deg)	d_{exp} (pm)	h k l	I/I_0	$\Delta 2\theta^{b}$ (deg)	$2\theta_{\exp}^{a}$ (deg)	d_{exp} (pm)	h k l	I/I_0	$\Delta 2\theta^{b}$ (deg)
17.363	510.31	110	8.9	-0.026	43.470	208.01	131	5.9	0.037
17.840	496.78	$1 \ 0 \ 1$	3.8	0.039	43.712	206.91	013	11.6	0.009
18.781	472.09	011	13.4	-0.013	45.044	201.10	222	7.6	0.029
22.113	401.65	111	9.5	-0.017	46.189	196.38	230	19.5	-0.015
25.937	343.24	020	32.7	-0.013	47.510	191.22	400	16.8	-0.008
26.639	334.35	210	50.1	0.015	48,592	187.21	032	5.0	-0.008
27.390	325.35	002	93.4	-0.006	49.686	183.34	023	14.3	-0.020
28.438	313.59	120	5.6	0.029	50.108	181.90	2 1 3	37.3	-0.020
29.381	303.74	021	23.5	0.003			1 2 3		0.007
30.028	297.34	211	100.0	0.007	52.795	173.25	322	2.9	-0.011
31.656	282.41	121	3.2	0.014	54,528	168.15	232	11.9	-0.008
32.579	274.62	112	12.2	0.014	54,936	167.00	420	4.7	-0.031
35.071	255.65	220	8.6	0.018	55.271	166.06	041	4.0	0.016
36.196	247.96	202	10.4	0.016	55.500	165.43	223	10.1	0.018
37.861	237.43	301	16.7	0.001	-56.529	162.66	004	4.1	-0.018
38.072	236.16	022	16.5	-0.008	56.818	161.90	421	4.1	0.026
38.577	233,19	212	18.1	0.008	62.448	148.59	422	4.3	-0.021
39.908	225.72	122	5.2	0.003	69.959	134.36	051	3.1	0.022

^aCu K α_1 radiation.

 $^{\mathrm{b}}\Delta 2\theta = 2\theta_{\mathrm{ber}} - 2\theta_{\mathrm{gem}}.$

TABLE 3. X-ray-powder data of the high tempe	erature form of A	Ag ₄ P ₂ S ₇
--	-------------------	---

$2\theta_{\exp}^{a}$ (deg)	d_{exp} (pm)	h k l	I/I_0	$\Delta 2\theta^{\flat}$ (deg)	$2\theta_{\exp}^{a}$ (deg)	d _{exp} (pm)	hkl	I/I ₀	$\Delta 2\theta^{b}$ (deg)
11.371	777.57	100	16.1	-0.020	37.847	237.52	122	32.4	0.007
16.079	550.78	020	11.9	-0.009	39.051	230.47	231	6.7	0.020
17.793	498.11	111	15.0	-0.017			302		
19.714	449.98	120	29.3	0.004	41.923	215.33	202	54.7	0.010
22.826	389.28	200	18.1	-0.012	43.602	207.41	051	10.7	- 0.016
24.945	356.68	211	59.5	0.015	44.119	205.10	042	11.3	- 0.005
28.018	318.21	220	100.0	0.014	45.011	201.24	213	42.3	-0.019
29.047	307.17	002	79.2	-0.003	47.743	190.35	142	18.1	0.009
30.211	295.59	201	29.3	-0.012	50.448	180.76	152	24.7	0.020
31.300	285.55	211	55.1	-0.007	51.227	178.19	422	11.6	-0.013
31.993	279.53	202	16.5	0.001	51.669	176.77	302	18.0	0.008
32.695	273.68	122	32.7	-0.011			251		
33.364	268.34	022	34.9	0.002			342		
34.481	259.90	140	39.9	0.018	51.924	175.95	061	23.0	-0.013
34.711	258.23	311	25.1	0.020					

^aCu K α_1 radiation. ^b $\Delta 2\theta = 2\theta_{ber} - 2\theta_{gem}$.

TABLE 4. X-ray powder data of $(CuPS_3)_n^a$

$2\theta_{exp}^{b}$ (deg)	d _{exp} (pm)	I/I ₀		$2\theta_{exp}^{b}$ (deg)	d_{exp} (pm)	<i>I/I</i> 0	
11.724	754.18	19.8	$(CuPS_3)_n$	50.169	181.69	27.7	$(CuPS_3)_n + Cu_3PS_4$
17.836	496.88	22.6	$(CuPS_3)_n$	53.723	170.48	80.9	$(CuPS_3)_n + Cu_3PS_4$
26.697	333.64	23.8	$(CuPS_3)_n$	54.664	167.76	3.1	$(CuPS_3)_n$
28.257	315.57	100.0	$(CuPS_3)_n + Cu_3PS_4$	56.646	162.35	6.5	$(CuPS_3)_n$
29.359	303.97	51.9	Cu ₃ PS ₄	58.325	158.07	5.8	$(CuPS_3)_n$
29.877	298.81	35.4	$(CuPS_3)_n$	58.442	157.79	17.1	$(CuPS_3)_n + Cu_3PS_4$
30.767	290.37	3.1	$(CuPS_3)_n + Cu_3PS_4$	59.037	156.34	20.2	$(CuPS_3)_n + Cu_3PS_4$
31.940	279.97	54.5	$(CuPS_3)_n + Cu_3PS_4$	59.238	155.86	7.3	$(CuPS_3)_n + Cu_3PS_4$
33.861	264.51	20.5	$(CuPS_3)_n$	60.598	152.68	9.3	$(CuPS_3)_n + Cu_3PS_4$
34.989	256.23	4.9	$(CuPS_3)_n + Cu_3PS_4$	60.957	151.86	6.4	$(CuPS_3)_n + Cu_3PS_4$
36.185	248.03	7.3	$(CuPS_3)_n$	66.858	139.82	4.1	$(CuPS_3)_n + Cu_3PS_4$
41.231	218.77	21.1	$(CuPS_3)_n + Cu_3PS_4$	67.107	139.36	3.4	(CuPS ₃),
41.918	215.34	4.1	$(CuPS_3)_n$	71.363	132.06	2.7	$(CuPS_3)_n$
46.558	194.91	3.2	$(CuPS_3)_n$	71.901	131.20	3.1	$(CuPS_3)_n$
48.951	185.92	11.7	$(CuPS_3)_n$	75.817	125.37	2.9	(CuPS ₃),
49.132	185.28	4.2	$(CuPS_3)_n$	76.464	124.47	8.0	$(CuPS_3)_n + Cu_3PS_4$
49.924	182.52	28.1	$(CuPS_3)_n + Cu_3PS_4$				

*Samples were always contaminated by traces of Cu₃PS₄. ^bCu K α_1 radiation.

TABLE 5. Compounds of the systems $Tl_2S\mathchar`-P_4S_{10}$ and $Sb_2S_3\mathchar`-P_4S_{10}$

Compound	Туре	T _m (K)	Space group	Lattice parameters (pm)	Reference
Tl ₃ PS ₄	Congruent	812	Pnma	a = 872.1(5), b = 1085.4(0), c = 895.11 $a = 873.3(5), b = 1084.9(6), c = 895.9(5)^{a}$	16
$Tl_2P_2S_6$	Congruent	842	Immm	a = 789.04, b = 689.51, c = 905.46 $a = 793.2(4), b = 689.2(4), c = 901.9(5)^{a}$	17
SbPS₄	Congruent	854		a = 1306.3(5), c = 627.9(5) a = 1303, c = 525	19

^aSingle crystal data.

Acknowledgments

We wish to thank the Deutsche Forschungsgemeinschaft (SFB 225: Oxidische Kristalle), Professor Dr. H. Haeuseler (Universität Siegen) for the measurement of the spectra, and the Fonds der Chemischen Industrie for financial support.

References

- 1 L. Bohaty, personal communication, 1990.
- 2 B. Gather, Ph.D. Thesis, T.U. Clausthal, 1973.
- 3 H. T. Evans, D. E. Appleman and D. S. Handwerker, LSUCRE-Program Am. Cryst. Ass., Cambridge, MA, 1963, Program 42.
- 4 W. F. Kuhs, M. Schulte-Kellinghaus, V. Krämer and R. Nitsche, Z. Naturforsch., 32b (1977) 1100.
- 5 J. Garin and E. Parthe, Acta Crystallogr., B 28 (1972) 3672.
- 6 R. Nitsche and P. Wild, Mater. Res. Bull., 5 (1970) 491.
- 7 W. F. Kuhs, R. Nitsche and K. Scheunemann, Mater. Res. Bull, 14 (1979) 241.
- 8 R. Blachnik and U. Wickel, Z. Naturforsch., 35b (1980) 1268.
- 9 P. Toffoli, P. Khodadad and N. Rodier, Acta Crystallogr., B38 (1982) 2374.

- 10 P. Toffoli, P. Khodadad and N. Rodier, Acta Crystallogr., B33 (1977) 1492.
- 11 P. Toffoli, P. Khodada and N. Rodier, Acta Crystallogr., B 34 (1978) 3561.
- 12 U. Pätzmann and W. Brockner, Z. Naturforsch., 38a (1983) 27.
- 13 L. Pauling and S. Weinbaum, Z. Kristallogr., 88 (1934) 48.
- 14 K. Yvon, W. Jeitschko and E. Parthe, J. Appl. Crystallogr., 10 (1977) 73.
- 15 A. I. Soklakov and V. V. Nechaeva, *Inorg. Mater.*, 6 (1970) 873.
- 16 P. Toffoli, P. Khodadad and N. Rodier, Bull. Soc. Chim. Fr., (1981) 429.
- 17 C. Wibbelmann, W. Brockner, B. Eisenmann and H. Schäfer, Z. Naturforsch., 38b (1983) 1575.
- 18 V. J. Tkachenko, L. G. Novikova and Ju. V. Voroshilova, Russ. J. Phys. Chem., 64 (1990) 482.
- V. S. D'ordyai, I. V. Galagovets, E. Yu. Peresh, Yu. V. Voroshilov, V. S. Gersimenko and V. Yu. Slivka, *Russ. J. Inorg. Chem.*, 24 (1979) 1603.
 A. I. Soklakov and V. V. Nechaeva, *Izv. Akad. Nauk SSSR*,
- Neorg. Mater., 5 (1969) 989. 20 M. Queignec, M. Evain, R. Brec and C. Sourisseau, J. Solid
- State Chem., 63 (1986) 89. 21 O. Sala and M. L. A. Temperini, Chem. Phys. Lett., 36 (1975)
- 21 O. Sala and M. L. A. Temperini, *Chem. Phys. Lett.*, 36 (1975) 652.
- 22 M. L. A. Temperini, O. Sala and H. J. Bernstein, Chem. Phys. Lett., 59 (1978) 10.